GBM SCMEME

 Fifth Semester B.E. Degree Examination, Jan./Feb. 2021 Turbo Machines

Time: 3 hrs .
Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Draw and explain the part of a general Turbo machine.
b. Distinguish between Turbo machines with positive displacement machines.
(06 Marks)
(06 Marks)
c. A turbine model of $1: 10$ de velops 2 kW under a head of 6 m at 500 rpm . Find the power developed by the prototype under a head of 40 m . Also find the speed of the prototype and its specific speed. Assume the turbine efficiencies to remain same.
(08 Marks)

OR

2 a. Define the static and stagnation state of fluid.
(04 Marks)
b. Define the following with the help of h-s diagram for power absorbing and power generating machine :
i) Total to total efficiency
ii) Total to static efficiency
iii) Static to total efficiency
iv) Static to static efficiency
(08 Marks)
c. Show that the polytropic efficiency during expansion process is given by $\eta_{\mathrm{p}}=\frac{\ln \left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)}{\frac{\gamma-1}{\gamma} \ln \left(\mathrm{P}_{1} / \mathrm{P}_{2}\right)}$

Module-2

3 a. Define Utilization factor and degree of reaction. Also derive the relation between utilization factor and degree of reaction.
(10 Marks)
b. Show that for maximum utilization of axial flow turbine with reaction $=\frac{1}{4}$. The speed ration given by $\mathrm{U} / \mathrm{V}_{1}=2 / 3 \cos \alpha_{1}$. Where $\mathrm{U}=$ Blade speed, $\mathrm{V}_{1}=$ Inlet absolute velocity $\alpha_{1}=$ Inlet Nozzle angle.
(10 Marks)
OR
4 a. With necessary velocity triangles and assumption derive the expression for effect of blade discharge angle on energy transfer and degree of reaction for radial flow machines.
(10 Marks)
b. At a stage in a 50% Reaction axial flow machine running at 3000 rpm , the blade mean diameter is 685 mm . If the maximum utilization for the stage is 0.915 . Calculate the absolute velocity at inlet and outlet and draw velocity triangles. Also find power output for flow rate of $15 \mathrm{Kg} / \mathrm{s}$.
(10 Marks)

Module-3

5 a. What is compounding of steam turbine? Explain method of compounding Impulse turbine.
(10 Marks)
b. The velocity of steam outflow from a Nozzle in a De-Laval turbine is $1200 \mathrm{~m} / \mathrm{s}$, nozzle angle is 22°. The rotor blades are equiangular and rotational blade speed is $400 \mathrm{~m} / \mathrm{s}$. Calculate:
i) Blade angles
ii) Tangential force
iii) Power product if $\mathrm{Vr}_{1}=\mathrm{Vr}_{2}$
iv) blading efficiency
(10 Marks)

OR

6 a. Derive the maximum blade efficiency equation for velocity compounded impulse steam Turbine (Curtis turbine)
(10 Marks)
b. In a Curtis steam turbine stage there are 2 row of moving blades with equiangular rotors. The steam enters $1^{\text {st }}$ rotor with 29° each while second rotor with 32° each. The absolute velocity of steam enter the first rotor at $530 \mathrm{~m} / \mathrm{s}$. The friction factor is $0.9 \mathrm{in} 1^{\text {st }}$ rotor, 0.91 in stator and 0.93 in $2^{\text {nd }}$ rotor. If final discharge is axial.
Find i) Mean blade speed
ii) Power if $\mathrm{m}_{\mathrm{s}}=3.2 \mathrm{~kg} / \mathrm{s}$.
(10 Marks)

Module-4

7 a. Derive an expression for work done by pelton wheel with necessary velocity triangles.
b. A Pelton wheel is to be designed for the following specifications :

Shaft power $=11772 \mathrm{~kW}$, Head $=380 \mathrm{~m}$, Speed $=750 \mathrm{rmp}$, Overall efficiency $=86 \%$, jet diameter not to exceed $1 / 6$ of wheel diameter, Determine :
i) Wheel diameter
ii) jet diameter
iii) Number of jets required, Take $\mathrm{C}_{\mathrm{v}}=0.98, \phi=0.46$.
(06 Marks)
c. A Kaplan turbine develops 24647.6 kW power at an average head of 39 m . Assuming a speed ratio of 2 , flow ratio 0.6 , diameter of boss equal to 0.35 times diameter of runner and an overall efficiency of 90%, calculate the diameter, speed and specific speed of turbine.
(06 Marks)

OR

8 a. Explain the working of Francis turbine with help of sectional arrangement diagram. Also draw the velocity triangles of Francis turbine.
(12 Marks)
b. Explain the function of draft tubes.
(02 Marks)
c. With neat sketches, explain the applications of draft tubes.
(06 Marks)

Module-5

9 a. Derive an expression for the minimum speed of staring a centrifugal pump.
(06 Marks)
b. Derive the expression for pressure rise in the centrifugal pump.
(08 Marks)
c. The impeller of a centrifugal pump has outer diameter 1.2 m is used to lift water at a rate of $1800 \mathrm{~kg} / \mathrm{s}$. The blade is making an angle of 150° with the direction of motion at outlet and speed is being 2000 rpm . If the radial velocity flow is $2.5 \mathrm{~m} / \mathrm{s}$. Find impeller power. (06 Marks)

OR

10 a. Explain the working principle of centrifugat compressor with neat sketch.
(10 Marks)
b. A centrifugal compressor compresses 30 kg of air per second at a rotational speed of 15000 rpm . The air enter the compressor axially and the conditions at exit sections are :
radius $=0.3 \mathrm{~m}$, relative velocity of air at the tip is $100 \mathrm{~m} / \mathrm{s}$ at an exit angle of 80°. Find the torque and power required to drive the compressor and also the ideal head developed. Take $\mathrm{P}_{01}=1$ bar and $\mathrm{T}_{01}=300 \mathrm{~K}$.
(10 Marks)

